A New Iterative Method for the Approximate Solution of Klein-Gordon and Sine-Gordon Equations

نویسندگان

چکیده

This article presents a new iterative method (NIM) for the investigation of approximate solution Klein-Gordon and sine-Gordon equations. approach is formulated on combination Mohand transform homotopy perturbation method. (MT) capable to handle linear terms only, thus we introduce (HPM) tackle nonlinear terms. NIM derives results in form series solution. The proposed emphasizes stability derived solutions without any linearization, discretization, or hypothesis. Graphical representation absolute error demonstrate efficiency authenticity this scheme. Some numerical models are illustrated show compactness reliability strategy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haar Wavelet Method for Solving the Klein-Gordon and the Sine-Gordon Equations

Abstract: Haar wavelet method for solving the Klein–Gordon and the sine-Gordon equations has been implemented. Application to partial differential equations is exemplified by solving the sine-Gordon equation. The efficiency of the method is demonstrated by five numerical examples. Computer simulation is carried out for problems the exact solution of which is known. This allows us to estimate th...

متن کامل

B-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION

We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.  

متن کامل

The Modified New Iterative Method for Solving Linear and Nonlinear Klein-Gordon Equations

Abstract In [1] Varsha and Jaferi proposed an iterative method for solving nonlinear functional equations, viz. nonlinear Voltera integral equations, algebraic equations and system of ordinary differential equations. Then Sachin and Varsha [2] implemented this method to solve linear and nonlinear partial differential equations of integer and fractional order. The aim of this article is to propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of function spaces

سال: 2022

ISSN: ['2314-8896', '2314-8888']

DOI: https://doi.org/10.1155/2022/5365810